Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations.
نویسندگان
چکیده
PURPOSE To investigate the accuracy of wall shear stress (WSS) estimation using MRI. Specifically, to investigate the impact of different parameters and if MRI WSS estimates are monotonically related to actual WSS. MATERIALS AND METHODS The accuracy of WSS estimation using methods based on phase-contrast (PC) MRI velocity mapping, Fourier velocity encoding (FVE) and intravoxel velocity standard deviation mapping were studied using numerical simulations. The influence of spatial resolution, velocity encoding, wall segmentation, and voxel location were investigated over a range of WSS values. RESULTS WSS estimates were found to be sensitive to parameter settings in general and spatial resolution in particular. All methods underestimated WSS, except for the FVE-based method, which instead was extremely sensitive to voxel position relative to the wall. Methods using PC-based WSS estimation with wall segmentation showed to be accurate for low WSS, but were sensitive to segmentation errors. CONCLUSION Even in the absence of noise and for relatively simple velocity profiles, MRI WSS estimates cannot always be assumed to be linearly or even monotonically related to actual WSS. High WSS values cannot be resolved and the estimates depend on parameter setting. Nevertheless, distinguishing areas of low and moderate WSS may be feasible.
منابع مشابه
Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI.
PURPOSE To explore the use of MR-estimated turbulence quantities for the assessment of turbulent flow effects on the vessel wall. METHODS Numerical velocity data for two patient-derived models was obtained using computational fluid dynamics (CFD) for two physiological flow rates. The four-dimensional (4D) Flow MRI measurements were simulated at three different spatial resolutions and used to ...
متن کاملAccuracy of MRI wall shear stress estimation
Methods Three methods for WSS estimation were studied. These methods are based on 1) linear extrapolation (LE) of MRI velocity data, 2) MRI velocity data in combination with estimation of location of vessel wall, and 3) Fourier velocity encoding (FVE). Numerical velocity fields representing axisymmetric 2D velocity profiles were generated for WSS values ranging from 1-20 N/m. Based on the numer...
متن کاملInvestigation of the Bed and Structural Slopes on Bed Shear Stress and Flow Characteristics around an Impermeable Groyne
In this paper, effects of the cross shore and groyne wall slopes on flow parameters around an impermeable groyne were considered using a three-dimensional numerical CFD model (i.e., FLUENT). The k-ε turbulence model was used to evaluate the Reynolds stresses. The model was first applied to a vertical groyne on a flat bed and the model results were compared with the relevant experimental data. T...
متن کاملBoundary Shear Stress in a Trapezoidal Channel
This paper focuses on a hydraulic radius separation approach used to calculate the boundary shear stress in terms of bed and wall shear stress proposed in a trapezoidal channel. The average bed and sidewall shear stress in smooth trapezoidal open channels are derived after using Guo & Julien (2005) early equations taking a part of an investigation to cover both rectangular and trapezoidal chann...
متن کاملAdvanced Quantitative Flow and Wall Shear Stress Analysis at 3T: 2D Vs 3D Time-Resolved MR Velocity Mapping
Introduction: Time-resolved (CINE) phase contrast (PC) MRI permits the assessment of blood flow within entire 3D vascular structures [1, 2]. The resulting high-dimensional datasets (3 spatial dimensions, 3 velocity directions, and time) require new visualization and quantification methods to derive reliable clinical parameters. In this context, an advanced flow quantification tool was developed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2012